Wähle deine Region

Wähle die Region, die am besten zu deinem Standort oder deinen Vorlieben passt.

Wähle deine Website-Sprache

Diese Einstellung steuert die Sprache der Benutzeroberfläche, einschließlich Schaltflächen, Menüs und aller Textinhalte der Website. Wählen Sie Ihre bevorzugte Sprache für das beste Surferlebnis.

Wähle die Sprachen für Stellenanzeigen

Wähle die Sprachen für Stellenanzeigen, die du sehen möchtest. Diese Einstellung bestimmt, welche Stellenanzeigen dir angezeigt werden.

University of Twente

PhD Fellowship: Computational Predictive Models of Skeletal Muscle Remodelling for Regenerative Robotics Applications

2024-11-28 (Europe/Amsterdam)
Job sichern

Über den Arbeitgeber

Looking for a job that matters? Join the university of technology that puts people first – and shape new opportunities both for yourself and for ou...

Besuchen Sie die Arbeitgeberseite

Job description

Join us at the Neuro-Mechanical Modeling and Engineering Lab, where we're pushing boundaries in muscle neurophysiology, biomechanics, and robotics as part of the ERC Consolidator Grant ROBOREACTOR.

This 4-year PhD position offers you the chance to work in an innovative interdisciplinary environment, collaborating on groundbreaking research at the frontier of healthcare and robotics.

Project Overview

As a PhD fellow, you’ll play a central role in building a predictive, multi-scale model of human skeletal muscle. This model will simulate how motor units within muscles respond to neural signals discharged by spinal neurons and adapt structurally over time when subjected to specific physical strain regimens. Leveraging machine learning and statistical modeling, you’ll integrate data from in vivo and in vitro studies to accurately predict muscle remodelling. The model will be validated against data from both healthy participants and post-stroke patients following a targeted 12-week leg training protocol. Using advanced tools such as high-density electromyography, ultrasound, and force dynamometry, you'll bridge biomechanics and neurophysiology, driving novel insights in muscle modelling and rehabilitation.

Key Responsibilities

As part of our team, you will:

  • Develop a computational muscle model, particularly for leg muscles, that simulates biological remodelling over time based on strain stimuli.
  • Use high-density EMG, ultrasound, and force dynamometry to personalize models to reflect individual neuromuscular physiology.
  • Program model remodelling logics in languages such as C++ and Python.
  • Train machine learning algorithms to identify the most probable muscle remodelling processes based on strain data.
  • Validate the model with both healthy and stroke patients, as well as through in vitro muscle data.

Collaborate with experts in control engineering, robotics, and bioengineering to contribute to developing a rehabilitation robotic system capable of autonomous tissue regeneration.

Your profile

We’re seeking candidates with:

  • Strong programming skills in C++ and Python, especially for musculoskeletal models.
  • Proficiency in bio-statistics, likelihood estimation, and advanced signal processing (e.g., high-density EMG and ultrasound).
  • A solid understanding of muscle physiology, motor unit neurophysiology, and exercise science.
  • A collaborative spirit, ready to work with interdisciplinary teams across robotics, control engineering, and biology.

Qualifications

  • Master’s degree (or equivalent) in fields like Biomedical Engineering, Computer Engineering, Information Engineering, or a related discipline.
  • Proven analytical skills and experience in signal processing and bio-statistics.
  • Proficiency in programming (Python, MATLAB, C++) and machine learning.
  • Strong communication and teamwork abilities in a research setting.

This is an exciting opportunity to engage in high-impact research with the potential to transform rehabilitation robotics. If you’re motivated by innovative problem-solving, interdisciplinary collaboration, and cutting-edge applications of predictive modelling, we encourage you to apply and contribute to a future where robotics and physiology work hand in hand for advanced rehabilitation solutions.

Our offer

We offer a position with a generous allowance:

  • A full-time 4-year position with 30% tax ruling option and a pension scheme.
  • A salary of € 2872,- during the first year, increasing to € 3670,- in the fourth year.
  • Holiday and year-end bonuses.
  • A minimum of 29 days of holidays.
  • Professional and personal development programs.
  • Access to Neuromechanics and Wearable Robotics Labs outstanding facilities.
  • Proximity to Enschede, a mid-size city with a large social offer, immersed in the nature of the Twente region.
  • Fun work atmosphere with social lab retreats.

Information and application

Apply by November 28th, 2024. Applications must include the following documents:

  • A video (2-minute max) describing your scientific interests and why you want to apply for this position.
  • A cover letter (1-page max) specifying how your experience and skills match the position as well as summarizing work in your masters.
  • A CV including English proficiency level, nationality, visa requirements, date of birth, experience overview, and publication list.
  • Contact information for at least two academic references. A support letter will be requested only if your application is considered.

The first-round interview will be scheduled in the week of December 9th.

For questions, please contact Prof. Massimo Sartori, mail: m.sartori@utwente.nl.
Please, only apply via the web platform and not via email.

About the organisation

The Faculty of Engineering Technology (ET) engages in education and research of Mechanical Engineering, Civil Engineering and Industrial Design Engineering. We enable society and industry to innovate and create value using efficient, solid and sustainable technology. We are part of a ‘people-first' university of technology, taking our place as an internationally leading center for smart production, processes and devices in five domains: Health Technology, Maintenance, Smart Regions, Smart Industry and Sustainable Resources. Our faculty is home to about 2,900 Bachelor's and Master's students, 550 employees and 150 PhD candidates. Our educational and research programmes are closely connected with UT research institutes Mesa+ Institute, TechMed Center and Digital Society Institute.

Jobdetails

Titel
PhD Fellowship: Computational Predictive Models of Skeletal Muscle Remodelling for Regenerative Robotics Applications
Arbeitgeber
Standort
Drienerlolaan 5 Enschede, Niederlande
Veröffentlicht
2024-11-11
Bewerbungsfrist
2024-11-28 23:59 (Europe/Amsterdam)
2024-11-28 23:59 (CET)
Job sichern

Mehr Jobs von diesem Arbeitgeber

Zeigt jobs in Englisch, Italienisch Einstellungen ändern

Über den Arbeitgeber

Looking for a job that matters? Join the university of technology that puts people first – and shape new opportunities both for yourself and for ou...

Besuchen Sie die Arbeitgeberseite

Das könnte Sie interessieren

...
Speeding Up DNA Analysis With String Algorithms Centrum Wiskunde & Informatica (CWI) 4 Minuten Lesezeit
...
Conserving Coral Reefs: The Backbone of Marine Biodiversity NIOZ Royal Netherlands Institute for Sea Research 4 Minuten Lesezeit
...
The Tiny Algae That Fuel The Marine Food Chain NIOZ Royal Netherlands Institute for Sea Research 4 Minuten Lesezeit
...
More Plants on Our Plates: Transforming the Food System With Fermentation Free University of Bozen - Bolzano 4 Minuten Lesezeit
Mehr Stories