Scegli la tua regione

Seleziona la regione che meglio si adatta alla tua posizione o alle tue preferenze.

Scegli la lingua del sito

Questa impostazione controlla la lingua dell'interfaccia utente, inclusi i pulsanti, i menu e tutto il testo del sito. Seleziona la tua lingua preferita per la migliore esperienza di navigazione.

Scegli le lingue per gli annunci di lavoro

Seleziona le lingue per gli annunci di lavoro che desideri vedere. Questa impostazione determina quali annunci di lavoro ti verranno mostrati.

Université de Lorraine

LUE - Joint Analysis for Characterization of Kinematics of droplets Superheated Patterns using iA– advanced Research on Refloodin

2025-05-15 (Europe/Paris)
Salva lavoro

     

This doctoral project, funded by Lorraine University of Excellence (LUE), is part of a research collaboration between the LEMTA laboratory (Université de Lorraine, France) and the GOTAS research team at the São Carlos School of Engineering (University of São Paulo, Brazil), which has been ongoing since 2021. The PhD student will be enrolled at the SIMPPÉ doctoral school of Université de Lorraine and will be supervised by Prof. Michel Gradeck (UL – France), co-supervised by Dr. Guillaume Castanet (CNRS – France) and Dr. Arthur Oliveira (EESC-USP, Brazil).
The thesis focuses on understanding the transient cooling of a nuclear fuel assembly during reflooding after a Loss of Coolant Accident (LOCA). In such an event, water is injected into the reactor core, causing intense boiling and generating large amounts of steam, leading to the Dispersed Film Flow Boiling (DFFB) regime. Although extensively studied, the behavior of droplets in the post-dryout phase remains poorly understood, especially in terms of heat transfer and reactor safety margins. Developing a more reliable model for droplet-wall interactions is crucial to ensure that the reactor core does not melt, even in degraded conditions.
The objective of this thesis is to improve the understanding and modeling of droplet mass flux to the wall. This will be achieved through three main tasks:
1. Building an experimental database: A variety of droplet impacts in the Leidenfrost regime will be studied using an existing experimental setup at LEMTA. Key parameters (Weber number, droplet diameter, tangential velocity) will be analyzed to determine their influence on the thermal field of the wall.
2. Developing a deep learning algorithm: A deep learning code will be created to identify droplet-wall interaction characteristics from thermal field modifications. This will rely on well-resolved experimental data from the first task and use open-source machine learning libraries like Anomalib.
3. Application in a complex DFFB regime: A new experimental setup will be developed to observe droplet impacts on a heated TiAlN-coated wall, enabling infrared visualization. This experiment will measure droplet distribution (size and velocity) and impact characteristics using high-speed cameras and dual PDA systems, helping to estimate droplet mass flux and refine predictive models.
The thesis timeline spans three years:
• Year 1: Building the database and developing the deep learning code.
• Year 2: Setting up the new experimental system and analyzing droplet mass flux.
• Year 3: Developing a predictive model and writing scientific publications and the PhD dissertation.
The PhD candidate will join a dynamic research team in France and Brazil specializing in heat and mass transfer. Prof. Gradeck's team at LEMTA is involved in national and international programs focused on energy transition and nuclear safety. The Brazilian GOTAS team, led by Dr. Oliveira at the São Carlos School of Engineering, contributes actively to these research efforts.
The outcomes of this thesis will significantly improve the modeling of nuclear core cooling during LOCA scenarios, with potential applications in various thermal power plants.

Candidati

Compila il modulo sottostante per candidarti a questa posizione.
Carica il tuo CV e gli allegati*

*Applicando per un lavoro elencato su Academic Positions, accetti i nostri termini e condizioni e la nostra politica sulla privacy.

Inviando questa candidatura, acconsenti a che conserviamo i tuoi dati personali per scopi legati al servizio. Valorizziamo la tua privacy e gestiremo le tue informazioni in modo sicuro. Se desideri rimuovere i tuoi dati, contattaci direttamente.

Dettagli del lavoro

Titolo
LUE - Joint Analysis for Characterization of Kinematics of droplets Superheated Patterns using iA– advanced Research on Refloodin
Datore di lavoro
Sede
34 Cours Léopold Nancy, Francia
Pubblicato
2025-03-12
Scadenza candidatura
2025-05-15 23:59 (Europe/Paris)
2025-05-15 23:59 (CET)
Tipo di lavoro
Salva lavoro

Altri lavori per questo datore di lavoro

Mostrando lavori in Inglese, Italiano Modifica impostazioni

Informazioni sul datore di lavoro

Université de Lorraine promotes innovation through the dialogue of knowledge, taking advantage of the variety and strength of its scientific fields...

Visita la pagina del datore di lavoro

Questo potrebbe interessarti

...
Forecasting the Future of Water University of Oulu 4 min. di lettura
...
Supercharging Chemicals For Clean Energy Dutch Institute for Fundamental Energy Research DIFFER 4 min. di lettura
...
Cracking the Code on Computing Education Free University of Bozen - Bolzano 4 min. di lettura
...
Speeding Up DNA Analysis With String Algorithms Centrum Wiskunde & Informatica (CWI) 4 min. di lettura
Altre storie