KU Leuven

DOCTORAL POSITION ON MECHANOBIOLOGY OF BIOENGINEERED MICROVASCULAR NETWORKS

2024-08-21 (Europe/Brussels)
Salva lavoro

Informazioni sul datore di lavoro

KU Leuven is an autonomous university. It was founded in 1425. It was born of and has grown within the Catholic tradition.

Visita la pagina del datore di lavoro

Applications are invited for a Ph.D. project position within the MAtrix / Mechanobiology & Tissue Engineering research group (www.mech.kuleuven.be/mechanobiology), a bioengineering group that is pioneering the role of cellular forces for microvascular formation and function in health and disease. The group is led by Hans Van Oosterwyck and is one of the few groups worldwide that has established 3D Traction Force Microscopy (TFM) routines and workflows for quantifying cellular force exertion in 3D, and routinely applies them to in vitro models of angiogenesis (endothelial invasion). Together with its research partners, it is currently developing novel in vitro models, compatible with TFM, to study the interplay between cellular force exertion, matrix mechanics and fluid flow, and how this interplay contributes to microvascular lesion formation within the context of specific (genetic) diseases.
Website unit

Project

Cerebral cavernous malformations (CCM) is a microvascular disease characterized by abnormal brain microcapillary beds resulting from mutations in CCM-complex genes, with no current cure. While we have recently demonstrated the significance of aberrant cellular forces for CCM lesion formation in 3D endothelial monoculture systems (see doi: 10.1101/2023.11.27.568780), more complex co-culture systems are needed to better mimic the environment of in vivo lesions. This project centers on deciphering the intricate interactions between endothelial cells (ECs) and pericytes within an advanced vessel-on-a-chip model. By integrating a 3D microfluidic platform with force quantification methods, the study aims to comprehensively elucidate the roles of EC and pericyte forces in CCM progression, emphasizing the dynamic interplay between biochemical and biomechanical factors. Beyond advancing vessel-on-a-chip technology, the project holds promise for broader applications in microvascular disease.

Profile

We are looking for a highly motivated, enthusiastic and communicative researcher with a master’s degree in biomedical engineering, biotechnology or a related field. The candidate should have obtained excellent study results. In addition, we require:

  • experience with basic cell culture techniques, optical microscopy, preferably live cell imaging in 3D (confocal microscopy, fluorescence microscopy).
  • some experience with or exposure to scientific computing (such as finite element modelling) and programming (such as Matlab).
  • a strong interest in mechanobiology and mechanotransduction.
  • a collaborative attitude, passion for research, creativity

Offer

We are offering an exciting Ph.D. position in a multidisciplinary, international and collaborative research environment. The MAtrix / Mechanobiology & Tissue Engineering group is working on cutting-edge methods for cellular force inference and is addressing important questions in vascular (mechano)biology in close collaboration with its biomedical partners. The group is based at the Leuven Chem&Tech / Leuven Nanocentre (https://set.kuleuven.be/chemtech_nanocentre) that forms the perfect environment for technology development and that houses unique equipment related to e.g. optical microscopy and nanoscopy, micro-, nano- and biofabrication and biosensing. KU Leuven is one of the oldest universities in Europe, with a very rich tradition in research and higher education. Today, it is among the best 100 universities in the world according to both Times Higher Education World Rankings and QS World University Rankings, and was ranked by Reuters as most innovative university of Europe since 2016. Leuven is a vibrant student town at the heart of Belgium and Europe, offering a great quality of life.

The group works in close collaboration with dr. Eva Faurobert at the Institute for Advanced Biosciences (University of Grenoble, France) and profs. Liz Jones, Aernout Luttun, Rozenn Quark and An Zwijsen (Centre for Molecular and Vascular Biology at KU Leuven), with whom you are expected to closely collaborate as well.

research group website
general information on working conditions
gross salary (salary scale 43)

Interested?

For more information please contact prof. Hans Van Oosterwyck, mail: hans.vanoosterwyck@kuleuven.be, Dr. Jorge Barrasa Fano, mail: jorge.barrasafano@kuleuven.be, Dr. Jyotsana Priyadarshani, mail: jyotsana.priyadarshani@kuleuven.be.

KU Leuven strives for an inclusive, respectful and socially safe environment. We embrace diversity among individuals and groups as an asset. Open dialogue and differences in perspective are essential for an ambitious research and educational environment. In our commitment to equal opportunity, we recognize the consequences of historical inequalities. We do not accept any form of discrimination based on, but not limited to, gender identity and expression, sexual orientation, age, ethnic or national background, skin colour, religious and philosophical diversity, neurodivergence, employment disability, health, or socioeconomic status. For questions about accessibility or support offered, we are happy to assist you at this email address.

Dettagli del lavoro

Titolo
DOCTORAL POSITION ON MECHANOBIOLOGY OF BIOENGINEERED MICROVASCULAR NETWORKS
Datore di lavoro
Sede
Oude Markt 13 Lovanio, Belgio
Pubblicato
2024-07-02
Scadenza candidatura
2024-08-21 23:59 (Europe/Brussels)
2024-08-21 23:59 (CET)
Tipo di lavoro
Salva lavoro

Altri lavori per questo datore di lavoro

Informazioni sul datore di lavoro

KU Leuven is an autonomous university. It was founded in 1425. It was born of and has grown within the Catholic tradition.

Visita la pagina del datore di lavoro